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Abstract

In the present article we propose an approach for treating the problem for the ®lling of a cavity with

incompressible ¯uid by the Finite Element Method (FEM). The area occupied by ¯uid is approximated by elements,
which have dimensions in both space and time. With this choice of elements the method is an implicit time stepping
technique and adaptive to the non-stationary nature of the solution. An algorithm is developed for localization of
the position of the free surface and for constructing of FE-mesh over the ¯uid occupied area at each time step.

Numerical results were obtained for simulation of the process of ®lling of the cavity of the form used for production
of 3-D axi-symmetric automobile wheels by the Counter Pressure Casting-method. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The Finite Element Method (FEM) for solving the

Navier±Stokes equation for problems with a free
boundary is used in the velocity±pressure formulation.
The elements chosen have dimensions in both space

and time, and this choice of elements allows for the
easy determination of the position of the free surface
and also incorporates the natural boundary conditions
in a straightforward manner [1±4]. The method is

essentially an implicit time stepping technique and
therefore, stable even for relatively large time steps.
Even at vanishing Reynolds number the convective

term and the free surface generally make the equations
non-linear and so a steady ¯ow state requires an itera-
tive computation that converges to that state. We use

the Newton iteration process to solve the entire set of

equations simultaneously for velocity and pressure
[5,6].
Methods of this type have been used for slowly

changing and time-independent free surface problems
[4]. In this paper we propose an adaptation of the
space±time FEM for treating the problem of ®lling a

cavity with incompressible ¯uid. The numerical sol-
ution of the Navier±Stokes equations for this problem
is complicated by the need to trace accurately, the
path in time of the free surface and to generate FE

mesh at the area occupied by the liquid at each time
step. In Section 3 we propose a method for parameteri-
sation and description of the evolution of the free sur-

face and grid superposition±deformation procedure for
updating of the FE mesh.

2. Mathematical formulation

In this section we shall give a short review of the

method of space±time elements. The ¯uid equations
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to be solved are the momentum conservation
equations
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where u is the velocity and f is the body force. For

Newtonian ¯ow the following equation applies
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�
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where p is the pressure and n is the kinematic vis-
cosity of the ¯uid. For an incompressible ¯uid, the

momentum Eq. (1), must be supplemented with the
incompressibility condition

r � u � 0: �3�

If we use (2) and (3), then (1) may be rewritten as
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The weak form of the conservation equations may
be written as�
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where V(t ) is the region that the liquid occupies at

time t and V the space±time domain for t>0

V � f�xi,t�:x i 2 V�t�,t > 0g:

The functions f and c are required to be measur-
able in Sobolev sense and f vanishes on that part
of the boundary of V which satis®es the no-slip

boundary conditions.
If we use the Green's theorem, then (5) can be

rewritten in the Galerkin form�
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where the integration in s is over the free boundary of

V(t ) and C(t ) is the domain

C�t� � f�x,t�:x 2 dV�t�,t > 0g:

The momentum equation requires conditions on every
boundary. At solid boundaries there is no normal vel-

ocity and no appreciable tangential slip. The natural
boundary conditions on the free surface is incorpor-
ated by the replacement of�
pdij ÿ n
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where Rk are the radii of the surface curvature of the

interface in any two orthogonal planes containing the
outward normal n with components nk and g is the
coe�cient of surface tension.

The set of conservation laws (6) and (7) form the
system of equations to be solved using the FEM. Let
us assume that the solution of the set is given at time t

and the solution at some later time is desired. Vn is
de®ned to be the region in the space±time containing
the ¯uid between the times t n and t n+1

V n � f�x i,t�:x i 2 V�t�,tnRtRtn�1g:

Then (6) and (7) may be rewritten as�
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where

C n � fx i, t�:x i 2 dV�t�,tnRtRtn�1g:

We approximate the region V(t n) by a set of ®nite el-

ements, in particular a set of eight-node elements in
the 3-D case, and introduce parametric approxi-
mations, which map these elements onto a standard

cube. For these transformations the nodes

Pi � �x i,yi,ti � i � 1, . . . ,8

of each element are transformed into eight points with

coordinates (1, 1, 1), (0, 1, 1), (0, 0, 1), . . . , (0, 0, 0)
in the space ( p, q, r ). The standard transformation of
the coordinates is written in the form
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z �
X8
i�1

ji� p,q,r�zi �z � x,y,t�

where

j1 � pqr, j2 � �1ÿ p�qr, j3 � �1ÿ p��1ÿ q�r,

j4 � p�1ÿ q�r j5 � pq�1ÿ r�,

j6 � �1ÿ p�q�1ÿ r�, j7 � �1ÿ p��1ÿ q��1ÿ r�,

j8 � p�1ÿ q��1ÿ r�:

Clearly the elements approximating the regions V(t n)
and V(t n+1) are the triangular bases of the prisms
which approximate the region Vn. The subdivision of

the domain Vn into a set of ®nite elements reduces the
original problem to one, which is ®nite dimensional
and the values of velocity, and pressure are calculated
only at the nodes of the elements. In terms of basic

function expansion the velocity and pressure ®elds are
taken to be of the form

ui � ~u i �
X
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pk�t� � �1ÿ r�pnk � rpn�1k

and u (i )n
k , p n

k are the nodal values of u and p at time

t n, f k and c k are the basic functions which are
assumed to form a complete set of functions over the
¯uid ®lled space. The interpolating functions f k must

be chosen to preserve continuity of velocity between
the elements because of the ®rst-order derivatives in
Eq. (9). In this paper f k are chosen to be a set of
bilinear pyramid functions

fk�Pl� � dkl �
�
1 k � l
0 k 6� l

:

No continuity requirement is necessary for the interp-
olating functions c k. They are chosen to be a set of
step functions

ck �
�
1 �x,y� 2 E k
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The Galerkin approximation satis®es
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Eqs. (10) and (11) form a system of equations

A � un�1 � B � un�1un�1 � C�un� � 0 �12�

which can be solved for the unknown vector

un�1 �

0BBBBB@
u
�1�n�1
k

u
�2�n�1
k

u�3�n�1k

pn�1k

1CCCCCA, k � 1, . . . ,N:

Note that even at vanishing Reynolds number the con-
vective term B is non-linear in u. Eq. (12) is non-linear,
so some iterative procedure is in general necessary for

the solution of the above system. The approximation
of V(t n) and V(n n+1) is composed of the eight-node
bases of the 16-node space±time elements for 3-D. For

free boundary problems these elements will change in
shape which in its turn depend on the values of vel-
ocity on the free surface at time t n+1. The system of

Eq. (12) and the method for computing the time evol-
ution of the free surface are solved iteratively. The
Newton±Raphson iterative procedure was adopted for
this work.

3. Newton±Raphson method

The direct linearisation procedures for solving the
non-linear equations proved to be unstable in a num-
ber of cases and thus, the Newton±Raphson procedure

was adopted for this work. An error function f is
de®ned as

f m � A � um
n � B � u�i �mn u� j�mn ÿ C

and the solution proceeds by solving the correction
Dun, to the previous estimate. Then

JmDum�1
n � f m �13�

where
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J m
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is the Jacobian of the system at step m and

um�1
n � um

n � Dum�1
n :

The actual solution thus consists of evaluating all the
error functions f and computing the corrections to u to

eliminate all the errors.
The Newton±Raphson procedure has proved to be

convergent for all problems that show acceptable
answers in the ®rst step. The ®rst step in the ¯uid ¯ow

equations is essentially a linear problem where zero in-
itial conditions are assumed.
In the present work Newton's method is applied to

the entire weighted residual equation set, so that press-
ure and velocity are all found simultaneously. At el-
ement level the matrix problem (13) is0BB@
N �11� N �12� N �13� C �1�

N �21� N �22� N �23� C �2�

N �31� N �32� N �33� C �3�

H �1� H �2� H �3� 0

1CCA �
0BB@
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Du�3�

Dp
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0BB@
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f �2�m

f �3�m

fc

1CCA �14�

Here fm is the vector of residuals of the component
momentum equations weighted with three linear basis
functions; fc is that of residuals of the continuity
equation weighted with step functions. The matrices of

derivatives are

N �ij � � @ f �i �m

@u� j�
, C �i � � @ f �i �m

@p
, H �i � � @ fc

@u�i �
:

Note that the zero occurs because the continuity
equation is independent of the pressure.
The residual Eq. (14) is solved at each time step.

The method is su�ciently accurate that at each time
step only one Newton iteration is required for conver-
gence.

4. The free boundary problem

The process of generating an FEM-mesh on the
region occupied by the liquid, at each time step,
involves three separate tasks. First, it is necessary to

devise a method for describing the location and shape
of the boundary. Second, an algorithm must be given
for computing the time evolution of the boundary.

Finally, deriving a method for updating the FE-mesh
on the area occupied by the ¯uid in order to resemble
the free surface more accurately.

The ®rst two problems are related because the

method of description will govern the choice of an

evolution algorithm. To solve them we parameterise

the free surfaces by chains of points connected by line

segments. The set of points comprises the nodes of the

Fig. 1. Intitial FE grid on a form used for casting of auto-

mobile wheels.

Fig. 2. FE grid constructed on the area occupied by ¯uid.
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Fig. 3. Evolution of the velocity vectors and ¯uid con®guration for automobile wheel casting problem.
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FE mesh, situation on the free surface. The evolution
of the chain of line segments is easily accomplished by

simply moving each point with local ¯uid velocity.
After obtaining the new localisation of the free

boundary we developed a grid superposition±defor-

mation method in order to adjust the FE mesh adap-
tively and automatically to features of the ¯ow. This
method constructs a mesh on the V(t ) domain occu-

pied by the liquid, essentially from the data of points
on its contour and from an initial FE grid G, con-
structed on the whole cavity. At the ®rst step the FE

grid G is constructed on the cavity of ®lling in such a
way as to contain V(t ) (Fig. 1). The process of gener-
ation of a new FE mesh on V(t ), which resembles the
real geometry of the area occupied by ¯uid more accu-

rately, is comprised of the following phases:

1. removal of boxes of G which do not intersect the

domain V(t );
2. a purely internal box becomes an element of the

mesh;

3. processing of the elements of G containing a section
of the boundary of the domain V(t ). These type of
boxes (and the adjacent if it is necessary) have to be

deformed in such a way that the points in which the
free surface truncate G become nodes of the new
grid. After modi®cation these nodes are placed on
the free surface. As a result, a new parameterisation

of the free surfaces by chains of points connected by
line segments is obtained (Fig. 2).

The procedure described above is repeated at each
time step.

5. Numerical results

Numerical results have been obtained for simulation
of the process of ®lling with molten metal, the cavity
of the form used for casting 3-D axi-symmetric auto-

mobile wheels by the Counter Pressure Casting-
method. The ®lling of the form is in¯icted by the
pressure di�erence between the chambers of a CPC

unit (pressure is applied at the inlet and atmospheric
pressureÐon the boundary). The evolution of the free
surface, the velocity ®eld and the automatically gener-

ated FE mesh used for calculation of the velocity and
pressure are shown in Fig. 3a±d. The velocity vectors
are drawn from the nodes of the elements, which are
marked by + signs.
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